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Computational anatomy with magnetic resonance imaging (MRI) is well established as a noninvasive
biomarker of Alzheimer’s disease (AD); however, there is less certainty about its dependency on the
staging of AD. We use classical group analyses and automated machine learning classification of standard
structural MRI scans to investigate AD diagnostic accuracy from the preclinical phase to clinical de-
mentia. Longitudinal data from the Alzheimer’s Disease Neuroimaging Initiative were stratified into 4
groups according to the clinical statusd(1) AD patients; (2) mild cognitive impairment (MCI) converters;
(3) MCI nonconverters; and (4) healthy controlsdand submitted to a support vector machine. The ob-
tained classifier was significantly above the chance level (62%) for detecting AD already 4 years before
conversion from MCI. Voxel-based univariate tests confirmed the plausibility of our findings detecting a
distributed network of hippocampal-temporoparietal atrophy in AD patients. We also identified a sub-
group of control subjects with brain structure and cognitive changes highly similar to those observed in
AD. Our results indicate that computational anatomy can detect AD substantially earlier than suggested
by current models. The demonstrated differential spatial pattern of atrophy between correctly and
incorrectly classified AD patients challenges the assumption of a uniform pathophysiological process
underlying clinically identified AD.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Recent advances in computer-based diagnosis making use of
structural magnetic resonance imaging (sMRI) andmachine learning
methods provide evidence of sufficient accuracy in discriminating
Alzheimer’s disease (AD) patients not only from healthy controls but
also from other common types of dementia (Davatzikos et al., 2008b;
Dukart et al., 2011a, 2012; Fan et al., 2008; Kloppel et al., 2008a,
2008b). For the clinically and neuroscientifically pertinent case of
early AD detection, support vector machine (SVM) classification and
other machine learning studies tapping into the preclinical phase
of AD convincingly demonstrate the potential for reliable early
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diagnosis (Casanova and Hsu, 2012; Davatzikos et al., 2008a;
Devanand et al., 2007; McEvoy et al., 2009; Misra et al., 2009;
Modrego, 2006). Two limitations applying to most of the previous
studies are the tuning of the classifiers to specific cohorts and with
respect to cross-validation. Both restrict their generalizability to the
general population. Tuning of a classifier to achieve a high accuracy
for detection of mild cognitive impairment (MCI) patients might
result in a substantial drop in accuracy when applying the same
classifier to AD patients. Similarly, the tuning of a classifier to achieve
high cross-validation accuracies might substantially increase the risk
of overfitting the classification model to the particular dataset used
in the study therewith providing an overoptimistic estimation for the
accuracy of the method when applied to a general population.

Despite the progress in the field of computer-based AD detection,
our knowledge about the capability of sMRI for early diagnosis even
before the first manifestation of clinical signs is still very limited. The
most recent model of brain anatomyederived biomarker in AD (Jack
et al., 2010) suggested a protracted progression of atrophy compared
with functional changes as observed by [F18]fluorodeoxyglucose
positron emission tomography. In contrast, other prospective studies
provided evidence that sMRI measurements may contain informa-
tion of ongoing disease-related process already before clinical
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Table 1
Subject group characteristics

Training set Testing set ANOVA

AD Control subjects AD Control subjects ncMCI cMCI F, df, p

n 54 54 54 83 61 142 d

Age (y) (mean � SD) 74.4 � 8.3 74.6 � 5.5 75.8 � 6.9 75.3 � 5.0 74.0 � 7.6 74.0 � 7.0 0.8, 5, 0.544
Gender (M/F) 31/23 29/25 25/29 40/43 45/16 93/49 d

MMSE (mean � SD) 23.1 � 1.9 29.0 � 1.1 23.4 � 2.1 29.3 � 0.8 27.5 � 1.9 26.7 � 1.7 166.5, 5, <0.001
Follow-up time (y) (mean � SD) 2.1 � 0.2 3.3 � 0.7 2.8 � 0.4 3.8 � 1.0 3.4 � 0.9 3.5 � 0.9 d

Key: AD, Alzheimer’s disease; ANOVA, analysis of variance; cMCI, mild cognitive impairment (converters); df, degree of freedom; F, female; M, male; MMSE, mini-mental state
examination; ncMCI, mild cognitive impairment (nonconverters); SD, standard deviation.
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manifestation of cognitive decline (Dickerson and Wolk, 2012;
Quiroz et al., 2012; Smith et al., 2008). However, these studies did
not test the predictive power of sMRI information to detect AD in
untested subjects or cross-validation. Therefore, there is a pressing
need to investigate the timescale of disease-related structural brain
changes in AD not only to advance our understanding of the disorder
but also to provide better tools for early diagnosis when neuro-
protection is possible. Another related aspect is that the application
of multivariate pattern classification techniques for early AD detec-
tion produces a high proportion of erroneous predictions for con-
version from MCI to AD (Ewers et al., 2010; Misra et al., 2009). Thus,
the secondary aim of our study is to investigate if false predictions
are because of random noise or deterministic atrophy pattern.

We systematically address the questions of timescale of disease
detection and potential causes of erroneous prediction while aim-
ing to overcome the aforementioned limitations. We first adopt a
pragmatic strategy testing whether AD-related atrophy is already
detectable several years before conversion followed by in-depth
investigation of atrophy patterns comparing incorrectly and
correctly diagnosed AD, MCI converting to AD during the follow-up
(MCI converters [cMCI]), MCI nonconverters (ncMCI), and healthy
control subjects. To this end, we apply classical mass-univariate
voxel-based analysis paralleled by machine learning classification
using SVMs.

2. Methods

2.1. Subjects

To evaluate temporal sensitivity of sMRI data for early detec-
tion of AD, we used 1.5-T T1-weighted images from the Alz-
heimer’s Disease Neuroimaging Initiative (ADNI, http://www.
adni-info.org/) of all available AD, cMCI, and ncMCI patients and
Table 2
Follow-up testing group characteristics

Baseline 1 y

Control subjects
n 42 42
Age (mean � SD) 76.5 � 4.7 77.1 � 4.7
Gender (M/F) 18/24 18/24
MMSE (mean � SD) 29.2 � 0.8 29.3 � 1.0

AD
n 54 53
Age (mean � SD) 76.7 � 7.0 77.1 � 6.7
Gender (M/F) 25/29 25/28
MMSE (mean � SD) 23.4 � 2.1 22.4 � 3.7

ncMCI
n 61 61
Age (mean � SD) 75.1 � 7.7 75.7 � 7.7
Gender (M/F) 45/16 45/16
MMSE (mean � SD) 27.5 � 1.9 27.4 � 2.3

Key: AD, Alzheimer’s disease; cMCI, mild cognitive impairment (converters); F, female; M
(nonconverters); SD, standard deviation.
healthy controls who had baseline and at least 2 years of follow-up
MRI scans.

The AD patient and control subject data were split into a dataset
used for SVM classifier training and another for diagnosis (Tables 1
and 2). Critically, the cMCI (Table 3) and ncMCI (Table 2) data were
used for diagnosis only. Baseline and follow-up scans after 6, 12, 24,
36, 48, and 60 months, if available, were downloaded from the
ADNI database along with the corresponding clinical information.
All the data available in ADNI1 and ADNI-GO studies were used for
subsequent evaluation. The diagnosis of AD was based on NINCDS/
ADRDA (National Institute of Neurological and Communicative
Disorders and Stroke and the Alzheimer’s Disease and Related
Disorders Association) criteria (McKhann et al., 1984). Exclusion
criteria were the presence of any significant neurologic disease
other than AD, history of head trauma followed by persistent
neurologic deficits or structural brain abnormalities, psychotic
features, agitation or behavioral problems within the previous 3
months, or history of alcohol or substance abuse. The study was
conducted according to the Declaration of Helsinki. Written
informed consent was obtained from all participants before
protocol-specific procedures were performed.

The ADNI was launched in 2003 by the National Institute on
Aging, the National Institute of Biomedical Imaging and Bioengi-
neering, the Food and Drug Administration, private pharmaceutical
companies, and nonprofit organizations, as a $60 million, 5-year
public-private partnership. The primary goal of ADNI has been to
test whether sMRI, positron emission tomography, other biological
markers, and clinical and neuropsychological assessments can be
combined to measure the progression of MCI and early AD. Deter-
mination of sensitive and specific markers of very early AD pro-
gression is intended to aid researchers and clinicians to develop
new treatments, monitor their effectiveness, and lessen the time
and cost of clinical trials. The Principal Investigator of this initiative
2 y 3 y 4 y

37 38 14
77.7 � 5.1 79.2 � 4.4 81.8 � 4.4
16/21 17/21 8/6
29.4 � 0.9 29.1 � 1.3 29.5 � 1.1

54 d d

78.8 � 7.0 d d

25/29 d d

19.2 � 5.8 d d

61 44 d

76.8 � 7.6 79.0 � 7.4 d

45/16 34/10 d

27.0 � 3.1 27.3 � 2.1 d

, male; MMSE, mini-mental state examination; ncMCI, mild cognitive impairment
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Table 3
Follow-up cMCI characteristics

TTC, 4 y TTC, 3 y TTC, 2 y TTC, 1 y ToC ToC, þ1 y ToCþ, 2 y

cMCI
n 17 38 83 128 129 70 45
Age (mean � SD) 74.0 � 6.5 75.2 � 6.4 75.6 � 7.0 75.8 � 6.7 76.7 � 6.7 77.5 � 6.4 78.3 � 7.0
Gender (M/F) 14/3 24/14 54/29 85/43 83/46 47/23 30/15
MMSE (mean � SD) 26.7 � 1.6 26.7 � 2.0 26.7 � 1.8 26.0 � 2.3 24.6 � 2.6 21.7 � 4.1 20.4 � 5.3

cMCI (same subgroup)
n d 17 17 17 17 d d

Age (mean � SD) d 73.8 � 5.6 74.7 � 5.5 75.7 � 5.5 76.9 � 5.6 d d

Gender (M/F) d 11/6 11/6 11/6 11/6 d d

MMSE (mean � SD) d 26.9 � 2.0 26.6 � 2.0 26.5 � 2.2 23.3 � 2.5 d d

“Same subgroup” indicates that the same cMCI patients were used for all time points.
Key: AD, Alzheimer’s disease; cMCI, mild cognitive impairment (converters); F, female; M, male; MMSE, mini-mental state examination; SD, standard deviation; ToC, time
point of conversion; TTC, time to conversion.
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is Michael W. Weiner, MD, VA Medical Center and University of
California, San Francisco. ADNI is the result of efforts of many co-
investigators from a broad range of academic institutions and pri-
vate corporations, and subjects have been recruited from >50 sites
across the United States and Canada. The initial goal of ADNI was to
recruit 800 adults, ages 55e90, to participate in the research,e200
cognitively normal older individuals to be followed for 3 years, 400
people with MCI to be followed for 3 years, and 200 people with
early AD to be followed for 2 years. For up-to-date information, see
http://www.adni-info.org/.
2.2. MRI data

The MRI dataset included standard T1-weighted images ob-
tained with different 1.5-T scanner types using a three-dimensional
magnetization-prepared rapid gradient-echo sequence varying in
repetition time and echo time with an in-plane resolution of 1.25 �
1.25 mm and 1.2 mm slice thickness. All images were modified as
described on the ADNI Web site (http://www.loni.ucla.edu/ADNI/
Data/ADNI_Data.shtml) including correction for distortions and
B1-field nonuniformity.
2.3. Image preprocessing

Structural MRI data preprocessing was carried out using the
SPM8 software package (Wellcome Trust Centre for Neuroimaging,
http://www.fil.ion.ucl.ac.uk/spm/) implemented in Matlab 7.11
(MathWorks, Inc, Sherborn, MA, USA). For automated tissue clas-
sification in gray matter (GM), white matter, and cerebrospinal
fluid, we used the NewSegment option. Aiming at optimum
anatomic precision, we then applied a diffeomorphic registration
algorithm DARTEL (Ashburner, 2007) for spatial registration to
Montreal Neurological Institute space using a study-specific tem-
plate created from a random representative subsample of 400
scans. The obtained GM images were additionally modulated to
preserve the total amount of signal from each region. The data were
smoothed with a Gaussian kernel of 8-mm full width at half
maximum and masked by applying a probability threshold of 0.2 to
the first and the last DARTEL templates (Dukart et al., 2011a). The
obtained mask contains all relevant GM structures whereas
excluding smoothing-related artifacts at the edges and signal
coming from periventricular GM. Overall, 384,065 voxels were left
after threshold masking restricting all subsequent SVM and voxel-
based morphometry (VBM) analyses to the GM structures of the
brain. Additionally, to dissociate disease-related effects from
changes associated with healthy aging, we used a linear “age-
detrending”model (Dukart et al., 2011b). This method estimated an
age model with voxel-wise linear fit in a group of healthy controls
(n ¼ 41) randomly selected from the ADNI dataset and not used for
further analyses. The obtained model parameters are then applied
to the sMRI data accounting for any variance attributable to healthy
aging in all subjects and patients.
2.4. SVM classification

For SVM classification, we used the freely available LIBSVM
software (Chang and Lin, 2001). The data of AD patients and
healthy controls were split randomly into a dataset used for
training of the SVM classifier (n ¼ 54/54, AD/healthy controls) and
a separate dataset used for classification-based diagnosis (Tables 1
and 2). The training dataset was used to build a linear soft-margin
SVM classifier using voxel-wise whole-brain GM information
without any further parameter optimization and default cost
value of 1 (Kloppel et al., 2008b). The independent diagnostic set
included data of AD, cMCI, and ncMCI patients and healthy con-
trols (Tables 2 and 3).

To obtain the precision of classification accuracy for the diag-
nostic cohorts, we apply bootstrapping with 100 permutations
using whole-brain information from a randomly selected 2/3 of the
training set without replacement and keeping the original pro-
portion of AD and controls (36 AD/36 healthy subjects) from the
whole training dataset to build a classifier to predict test data of
healthy controls and cMCI, ncMCI, and AD patients at each data
acquisition time point. Aiming at an unbiased and precise estima-
tion of classification/prediction accuracy, we used bootstrapping,
which was shown in the literature to provide a more accurate
estimation of the classification accuracy compared with other ap-
proaches such as leave-one-out or other cross-validation modes
(Dougherty et al., 2010; Jain et al., 1987).

The results are presented using 2 different timescalesdfor
healthy controls, AD, and ncMCI, the zero point on time axis sig-
nifies the baseline scan, whereas for cMCI, it signifies the time point
of conversion (time to conversion [TTC]). The cMCI data were or-
dered on the timescale relative to the TTC as this ordering indicates
that all subjects reached a predefined level of cognitive decline. For
ncMCI, classification performance was evaluated as assignment to
the healthy control group, whereas for cMCI, correct classification
was considered as assignment to the AD group. To enable longitu-
dinal estimates of accuracy in the same group of cMCI patients, all
classifications were repeated for a subset (n ¼ 17) with imaging
data for each of 3 years up to time point of conversion.

In an additional step, we performed feature selection within
the training dataset using weights provided by the classifier for
each voxel as a measurement of its contribution to the separation
between AD patients and healthy controls (weights close to zero
indicate a low contribution). The absolute values of the weights
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Fig. 1. Mean MMSE values of correctly and incorrectly classified subjects within each clinical group at different time points. For comparability reasons and to facilitate interpretation,
MMSE values for cMCI subjects are also displayed as starting from the baseline examination. * Significant differences (one sided, p < 0.05) in MMSE between correctly and
incorrectly classified subjects. Abbreviations: AD, Alzheimer’s disease; BL, baseline; cMCI, mild cognitive impairment (converters); MMSE, mini-mental state examination; ncMCI,
mild cognitive impairment (nonconverters); SE, standard error.
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were first sorted from lowest to highest. In a second step, we
sequentially removed features with lowest weights as provided by
the whole-brain classification. Similar to optimization of SVM pa-
rameters to a particular training dataset, iterative feature selection
procedures often carry the risk of overfitting a classifier to the
training dataset. This might be the case when the weights are
redetermined after each selection step, and the newly obtained
weights are used to guide further feature selection steps. This
procedure leads to establishment of numerous feature maps each
having different weights assigned to the same features. Selection of
the best of them without accounting for the total number of
calculated weight maps may therefore lead to overoptimistic ac-
curacy estimations. To avoid overfitting the classifier by multiple
testing, the distribution of weights was calculated only once, using
the classifier trained on whole-brain information in the training
cohort. The computed maximum weight was set as 100% (with a
weight of zero corresponding to 0%). Subsequently, all features with
weights <5% of the maximum were removed from classification. A
classifier based onweights exceeding this threshold was used on all
cMCI data at each time point. This procedure was repeated in 5%
steps for the whole range of weights by consecutively removing
features with lowest weights in the initial whole-brain classifica-
tion, training a classifier on the remaining features, and reclassify-
ing the cMCI data.
All classification accuracies with and without feature selection
were compared with each other, between consecutive time
points, and with chance-level distributions (obtained from the
same data by randomly shuffling diagnostic labels within the
training dataset) by using 2-sample t tests with a significance
threshold of 0.05 (1 tailed, Bonferroni corrected for multiple
comparisons).

2.5. Voxel-based morphometry

We performed analyses of covariance in the test cohort VBM
data comparing correctly and incorrectly classified AD, cMCI, and
ncMCI patients to each other and to healthy controls. For each
patient, we used the first scan misclassified using whole-brain
information in more than 50% of all permutations for VBM com-
parisons. As group sizes of correctly and incorrectly classified
subjects differed within each clinical group, a random sample was
drawn from the bigger group to match the smaller group in size.
Age, gender, and total intracranial volume were included as
covariates for all comparisons. A statistical threshold of p < 0.001
uncorrected at voxel level and an extent threshold of 200 voxels at
cluster level were applied for all statistical analyses. We used the
automated anatomic labeling atlas (Tzourio-Mazoyer et al., 2002)
implemented in the Matlab-based WFU PickAtlas 2.3 toolbox



Fig. 2. (A) Performance of the SVM, classifier with different numbers of features for classification of the cMCI group at different time points. Features are selected with their weight
exceeding a predefined percentage threshold of the maximum feature weight obtained using whole-brain classification. (B) Performance of the feature set providing the highest
average accuracy for correct classification of cMCI subjects using scans from all time points in the feature selection procedure. (C) Features providing highest classification accuracy
for correct prediction of conversion from MCI to AD (thresholded at 65% of maximum feature weight). Abbreviations: AD, Alzheimer’s disease; cMCI, mild cognitive impairment
(converters); SVM, support vector machine.
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(Maldjian et al., 2003, 2004) to assign imaging results to anatomic
labels.
2.6. Statistical analysis of behavioral and demographic data

We performed analyses of variance (ANOVAs) to compare all
testing and training groups at baseline in terms of age and mini-
mental state examination (MMSE, Folstein et al., 1975). For all
ANOVAs that revealed significant between-group differences, we
conducted post hoc Bonferroni t tests with a significance threshold
of p < 0.05 for pairwise group comparisons. Group differences
regarding sex were evaluated using a chi-square test for indepen-
dent samples. The statistical analyses were performed with the
software package SPSS 17.0 (http://www.spss.com/statistics/).

To investigate potential differences in the development of
cognitive profiles (as measured by MMSE) between misclassified
and correctly classified subjects (as classified by SVM) within each
clinical group, we calculated repeated-measures ANOVAs with
factor time as a within-group factor and classification label (correct
vs. misclassified) as a between-group factor. Only time points for
whichMMSEwasavailable for a sufficientnumberof subjects inboth
correctly andmisclassified groups (numberof subjects per condition
>5) were used for these analyses. If an ANOVA revealed significant
group or group-by-time differences, post hoc t testswere performed
to compare the groups at each time point. As we expected that
subjects misclassified as AD in both the control and ncMCI groups
would show greater cognitive deficits and vice versa subjects clas-
sified as controls would express fewer cognitive deficits, a 1-sided
significance threshold of p < 0.05 was applied for these analyses.
3. Results

3.1. Behavioral and demographic results

Groups used for testing and training did not differ in terms of
age (Table 1). As expected, we observed significant differences in

http://www.spss.com/statistics/


Fig. 3. (A) Classification accuracies for ncMCI subjects at different MRI scanning time
points with and without feature selection. (B) Classification accuracies for all cMCI
subjects at different MRI scanning time points with and without feature selection. (C)
Classification accuracies for the 17 cMCI subjects for which the data were available for
all 4 time points with and without feature selection. * Significant difference to
chance level (p < 0.05, 1 tailed, Bonferroni corrected for multiple comparisons) and
** significant difference to the preceding time point (p < 0.05, 1 tailed, Bonferroni
corrected for multiple comparisons). Abbreviations: cMCI, mild cognitive impairment
(converters); f.s., feature selection; MRI, magnetic resonance imaging; ncMCI, mild
cognitive impairment (nonconverters); SVM, support vector machine, TTC, time to
conversion.
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MMSE scores between all groups. Gender differed significantly
between AD and both MCI groups and between controls and both
MCI groups but not between AD and controls and not between the
MCI groups. Post hoc t tests revealed significant differences in
MMSE between healthy controls and all other clinical groups for
both the test (healthy controls vs. AD: t(94) ¼ 17.12, p < 0.05;
healthy controls vs. cMCI: t(182) ¼ 9.41, p < 0.05; healthy controls
vs. ncMCI: t(113) ¼ 5.87, p < 0.05) and training cohorts (healthy
controls vs. AD: t(106) ¼ 19.51, p < 0.05). cMCI and ncMCI differed
significantly from each other (t(201) ¼ 2.81, p < 0.05) and from AD
in the test cohort (cMCI vs. AD: t(194) ¼ 11.40, p < 0.05; ncMCI vs.
AD: t(113) ¼ 10.97, p < 0.05). No significant differences in MMSE
were observed between test and training sets for AD patients (AD
training vs. AD testing: t(106) ¼ 0.73, p > 0.99) and for healthy
controls (t(94) ¼ 1.41, p > 0.99). The overall comparison revealed a
significant difference in gender between groups (c2(5) ¼ 16.80, p ¼
0.005). However, no significant differences were observed for
gender between AD patients and healthy controls in the training
(c2(1) ¼ 0.150, p ¼ 0.699) and testing cohorts (c2(1) ¼ 0.113, p ¼
0.737). Further, no differences were observed between cMCI and
ncMCI (c2(1) ¼ 1.343, p ¼ 0.246). Both cMCI and ncMCI differed
significantly in gender distribution from healthy controls (cMCI vs.
healthy controls: c2(1) ¼ 6.94, p < 0.05; ncMCI vs. healthy controls:
c2(1) ¼ 10.01, p < 0.05) and AD patients (cMCI vs. AD: c2(1) ¼ 6.02,
p < 0.05; ncMCI vs. AD: c2(1) ¼ 9.08, p < 0.05).

The ANOVAs investigating differences in MMSE between
correctly and incorrectly classified subjects revealed significant
differences in all clinical groups. Thus, both in the control (F(1,40)¼
4.1, p ¼ 0.049) and ncMCI (F(1,59) ¼ 4.7, p ¼ 0.035) groups, subjects
classified as controls had higher MMSE values compared with those
who were classified as AD. The opposite pattern was observed in
cMCI (F(1,158) ¼ 6.0, p ¼ 0.015) and AD (F(1,51) ¼ 5.0, p ¼ 0.03),
with subjects correctly classified as AD showing significantly lower
MMSE values. Group-by-time interactions failed to reach the sig-
nificance threshold in any group though showed a trend (p< 0.1) in
control and cMCI groups. However, in the post hoc t tests, differ-
ences between correctly and incorrectly classified subjects in con-
trol and ncMCI groups were not significant at baseline but became
significant on follow-up examinations (Fig. 1). In the AD and cMCI
groups, differences between correctly and incorrectly classified
subjects were significant at all time points except for time points 2
and 5 for cMCI.

3.2. SVM classification

The results of the feature selection procedure are displayed in
Fig. 2. All results described as with feature selection are referring to
the feature set providing the maximum classification accuracy in
this feature selection procedure.

Whole-brain SVM classification yielded average (over all time
points) diagnostic accuracies of 80.3%, 73.5%, and 63.7% for healthy
controls, AD, and cMCI, respectively. In the ncMCI group, 69.0% have
been classified as control subjects. At a TTC of 4 and 3 years, cMCI
patients were classified at chance level (Fig. 3). At a TTC of 2 years,
the accuracy increased above the chance level and kept increasing
annually. In all other groups, accuracy was significantly above the
chance level at all time points (Figs. 3 and 4).

Feature selection resulted in a feature set consisting of 814
voxels, corresponding to e0.21% of the initial brain volume, in
bilateral hippocampus, amygdala, precentral gyrus, middle frontal
gyrus, left inferior temporal gyrus, crus I, supramarginal gyrus, right
calcarine sulcus, caudate nucleus, and cerebellum VI (Fig. 2C).
Average classification accuracy over all time points using this
feature set was significantly increased compared with classification
without feature selectiond82.0%, 76.6%, and 67.2% for healthy
controls (t(344) ¼ 3.21, p < 0.05), AD (t(320) ¼ 7.23, p < 0.05), and
cMCI (t(1068) ¼ 7.36, p < 0.05), respectively. Mean assignment for
ncMCI patients as control subjects significantly decreased to 60.6%
(t(452) ¼ 23.64, p < 0.05). With feature selection, the accuracy for
cMCI ate62% was higher than chance level at a TTC of 4 years and
was mostly stable at consecutive time points (Fig. 3). The classifi-
cation accuracy for the 17 cMCI patients in the feature selection set
was similar to that in the whole cMCI group.



Fig. 4. (A) Classification accuracies for AD subjects at different MRI scanning time
points with and without feature selection. (B) Classification accuracies for control
subjects at different MRI scanning time points with and without feature selection.
* Significant difference to chance level (p < 0.05, 1 tailed, Bonferroni corrected for
multiple comparisons) and ** significant difference to the preceding time point (p <

0.05, 1 tailed, Bonferroni corrected for multiple comparisons). Abbreviations: AD,
Alzheimer’s disease; f.s., feature selection; MRI, magnetic resonance imaging.
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After feature selection, diagnostic accuracy for AD significantly
increased at baseline (t(106) ¼ 8.41, p < 0.05) and 1-year follow-up
(t(104) ¼ 5.61, p < 0.05) compared with classification without
feature selection (Fig. 4). For ncMCI, the percentage of assignment
to the control group significantly decreased at all time
pointsdbaseline (t(120) ¼ 14.96, p < 0.05), 1-year follow-up
(t(120) ¼ 12.86, p < 0.05), 2-year follow-up (t(120) ¼ 12.00, p <

0.05), and 3-year follow-up (t(86) ¼ 10.20, p < 0.05). For healthy
controls, accuracy significantly increased only at 3-year follow-up
(t(74) ¼ 3.26, p < 0.05). For cMCI, significant increases in accuracy
were observed at TTC of 4 years (t(32) ¼ 4.39, p < 0.05), 3 years
(t(74) ¼ 8.43, p < 0.05), 2 years (t(164) ¼ 9.99, p < 0.05), 1 year
(t(254) ¼ 8.96, p < 0.05), and at time point of conversion (t(256) ¼
3.24, p < 0.05). For the cMCI subgroup consisting of the same
subjects at all time points, accuracy increased at all time points (TTC
of 3 years: t(32) ¼ 4.92, p < 0.05; TTC of 2 years: t(32) ¼ 6.60, p <

0.05; TTC of 1 year: t(32) ¼ 4.16, p < 0.05; time point of conversion:
t(32) ¼ 3.22, p < 0.05).

3.3. Voxel-based morphometry

The comparison of incorrectly classified cMCI to healthy controls
revealed atrophy restricted to bilateral hippocampus, amygdala,
ventral putamen, left thalamus, and right parahippocampal gyrus
(Fig. 5A, Table 4). Correctly classified cMCI showed extensive atro-
phy extending to bilateral hippocampus, fusiform gyrus, superior,
middle, and inferior temporal gyri, inferior parietal lobule, supra-
marginal gyrus, parahippocampal gyrus, insula, angular gyrus,
amygdala, and putamen. Left-sided atrophy was observed in the
postcentral gyrus. A direct comparison of correctly and incorrectly
classified cMCI revealed significant atrophy in correctly classified
cMCI in a temporoparietal-hippocampal network (Fig. 5B, Table 5).
The opposite contrast revealed atrophy in misclassified cMCI in the
cerebellum bilaterally.

In ncMCI classified as AD, we observed significant atrophy
compared with healthy controls in bilateral hippocampus, amyg-
dala, and parahippocampal gyrus and also atrophy restricted to the
left hemisphere in fusiform gyrus and middle and inferior temporal
gyri. ncMCI classified as controls showed no differences relative to
healthy controls. A direct comparison in the ncMCI cohort revealed
atrophy in ncMCI classified as AD in temporal and hippocampal
regions. In the opposite contrast, we found calcarine sulcal atrophy
in ncMCI classified as controls.

In the comparison of correctly classified AD to healthy controls,
we observed significant atrophy in AD in bilateral hippocampus,
parahippocampal gyrus, fusiform gyrus, superior and middle tem-
poral gyri, supramarginal gyrus, superior and inferior parietal lob-
ules, angular gyrus, and amygdala. Only left-hemispheric decreases
were observed in the postcentral gyrus and ventral putamen. Right-
hemispheric changes were restricted to the inferior temporal gyrus.
Correctly classified AD showed greater atrophy compared with
misclassified AD in the right inferior temporal and left lingual gyri.
Misclassified AD showed atrophy in the right gyrus rectus only.

The comparison of correctly and incorrectly classified control
subjects revealed an AD-typical pattern of atrophy in misclassified
control subjects in a temporoparietal-hippocampal network. No
other significant differences were observed.

4. Discussion

Here, we investigate the longitudinal changes in predictive value
of computer-based diagnosis of AD. We detect systematic differ-
ences in classification accuracy of cMCI that were dependent to
closeness to conversion time. Whole-brain SVM classification 3e4
years before conversion provides chance-level accuracy for AD
detection. After feature selection restricting the analysis to struc-
tures of the medial temporal lobe and parietal cortex, we achieve
accuracies significantly higher than chance level already 4 years
before conversion. Our findings not only provide a novel perspec-
tive on the time- and state-dependent changes of diagnostic ac-
curacy within the preconversion period from MCI to AD but also
bring new evidence for potentially differential pathophysiological
processes underlying neurodegeneration in clinically defined AD.

Our findings bring strong evidence that sMRI-based information
can be used to predict conversion from cMCI to AD at disease stages
earlier than previously suggested (Jack et al., 2010). On the one side,
this demonstrates that already at early disease stages, sMRI data
contain information on AD-related pathologic changes, which can
be used for prediction of conversion from MCI to AD. On the other
side, the relatively low accuracy of 62% obtained using an unbiased
classifier, which was not optimized for MCI subjects or cross-
validation, also suggests that interindividual variability in the
sMRI measurements might be the impeding factor in our study
preventing high diagnostic accuracies at this early disease stage.
Using optimized preprocessing and classification methods and
integration of longitudinal trajectories into the algorithms might
provide remedy.

Additionally, we find strong evidence that AD-related structural
changes can be observed before the occurrence of any significant



Fig. 5. Voxel-based morphometry results for comparison of correctly and incorrectly classified subjects from each clinical group to control subjects (A) and to each other (B). Results
are displayed at a significance threshold of 0.001 uncorrected at voxel level with a cluster threshold of 100 voxels. * for ncMCI, the term “correct” refers to their classification as
control subjects; however, the terms “correct” and “misclassified” are misleading for this cohort as the etiology of the symptoms is largely unknown. Abbreviations: AD, Alzheimer’s
disease; cMCI, mild cognitive impairment (converters); ncMCI, mild cognitive impairment (nonconverters); n.s., not significant.
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cognitive deficit. This finding is in line with recent studies
demonstrating an increased atrophy rate in cognitively normal
subjects with high beta-amyloid deposition and greater atrophy in
the right medial temporal lobe in cognitively normal subjects with
future cognitive impairment (Chételat et al., 2012; Tondelli et al.,
2012). Control subjects and ncMCI classified as AD demonstrate a
pattern of structural GM abnormalities in a temporoparietal-
hippocampal network that is very similar to the one previously
reported in AD patients (Devanand et al., 2007; Frisoni et al., 2002;
Schroeter et al., 2009). Corroborating these structural observations,
we find statistically significant yet subclinical cognitive deficits in
control and ncMCI subjects classified as AD compared with those
classified as controls. These differences increase over time without
reaching the significance threshold of a formal interaction analysis.
However, the observation of AD-typical structural changes com-
bined with a decline in cognitive performance in control subjects
and in ncMCI patients strongly supports the conjecture that AD-
related pathology can be detectable at much earlier time points
than proposed in current models of AD progression (Jack et al.,
2010). The finding of AD-like atrophy patterns linked with faster
cognitive decline in control subjects and ncMCI patients classified
as AD is in line with previous studies performed by Davatzikos et al.
(2009, 2011), who demonstrated faster cognitive decline in control
and ncMCI subjects with an AD-like atrophy pattern.

We further demonstrate that detection accuracy of conversion
from MCI to AD significantly increases with closeness to the time
point of conversion. Interestingly, classification after feature selec-
tion provides accuracies higher than chance level 4 years before
conversion opposed to classification of whole-brain data reaching
similar level of accuracy at earliest at the time point of clinical
conversion. The localization and spatial extent of the anatomic
feature set are in line with previous research showing the prece-
dence of pathologic changes in hippocampus and parietal cortex
and relative sparing of cerebellum (Braak and Braak, 1991; Jack
et al., 2010; Schroeter et al., 2009). These studies have shown that
beta-amyloid and tau pathologies start focally in AD and spread
with time to other areas of GMwhereas the further accumulation of
histopathologic changes in already affected regions slows with
time. Atrophy is assumed to follow this spreading pattern of beta-
amyloid and tau depositions with a delay of several years. Based
on these findings, one would expect that atrophy is restricted to a
few brain regions in earlier AD stages. Other parts of the brain are
not expected to contain relevant information for disease detection
at this early stage. Given that the standard SVM assigns a weight to
alldincluding noninformativedfeatures, the inclusion of a large
number of features (as performed in a whole-brain approach) may
decrease the signal-to-noise ratio and therewith lower the possible
classification accuracy. Feature selection at this early AD stage will
remove noisy features and so increase classification accuracy. In
contrast, at later AD stages, atrophy involves large parts of cortex
and so all brain regions carry some information that are relevant for
discrimination between AD patients and healthy control subjects.
Performing feature selection at this stage will lead to removal of
informative features and may decrease classification accuracy. Both
effects are observed in our study: the gain achieved in cMCI using
feature selection rapidly decreases with closeness to the conversion
time point. Correspondingly, feature selection in manifest AD and
also in healthy control subjects adds little, giving a similar accuracy
to that with a whole-brain approach. This observation is consistent
with the literature evaluating the effect of feature selection on



Table 4
Voxel-based morphometry results for comparisons with control subjects

Region Side MNI coordinates Cluster size Peak T value

x y z

AD correct < controls
Amygdala, fusiform gyrus, hippocampus, parahippocampal gyrus, putamen, middle and

superior temporal poles
L �24 �5 �16 2099 5.65

Amygdala, fusiform gyrus, hippocampus, parahippocampal gyrus, middle and superior
temporal poles

R 28 �8 �18 1611 5.30

Angular gyrus, supramarginal gyrus, middle temporal gyrus, superior temporal gyrus L �58 �54 9 3437 5.01
Middle occipital and middle temporal gyri R 40 �74 16 715 4.61

AD misclassified < controls
Putamen R 31 3 �6 270 4.07

cMCI correct < controls
Amygdala, fusiform gyrus, hippocampus, insula, middle occipital, olfactory cortex,

parahippocampal gyrus
L �26 �8 18 4486 6.52

Amygdala, hippocampus, parahippocampal gyrus R 27 �8 18 2793 6.12
Angular gyrus, supramarginal gyrus L �52 �59 29 3537 5.00
Middle temporal gyrus L �54 �12 �21 940 4.21
Middle occipital gyrus R 44 �77 18 109 3.92
Fusiform gyrus, inferior temporal gyrus R 42 �17 �31 364 3.87
Superior temporal pole R 54 �9 �15 383 3.60

cMCI misclassified < controls
Amygdala, hippocampus, parahippocampal gyrus R 28 �11 �18 701 4.36
Thalamus L �12 �30 0 332 4.00
Amygdala, hippocampus L �27 �11 �10 293 3.86

ncMCI misclassified < controls
Inferior temporal gyrus, middle temporal gyrus L �44 1 �45 1140 4.28
Amygdala, hippocampus, parahippocampal gyrus R 30 �9 �19 602 4.13
Amygdala, fusiform gyrus, hippocampus, parahippocampal gyrus L �28 �12 �18 1016 4.09

Key: AD, Alzheimer’s disease; cMCI, mild cognitive impairment (converters); L, left; MNI, Montreal Neurological Institute; ncMCI, mild cognitive impairment (nonconverters);
R, right.
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classification accuracy (Chu et al., 2012) and studies reporting
similar accuracies for differentiation between AD patients and
healthy controls using sMRI with and without feature selection
(Dukart et al., 2011a; Gerardin et al., 2009; Hinrichs et al., 2009;
Kloppel et al., 2008a, 2008b). Our result therefore emphasizes the
importance of feature selection procedures at the MCI stage of early
incipient AD using sMRI.

Another finding is that there is a significant reduction in
assignment of ncMCI to healthy controls using feature selection. In
general, all MCI patients from the ADNI cohort used in our study
correspond to the amnestic MCI type. Previous studies with a
follow-up of up to 10 years have shown that at longer follow-up,
most of the amnestic MCI convert to AD (Fischer et al., 2007;
Visser et al., 2006). It is therefore likely that a 4-year follow-up is
insufficient to detect all cases of premanifest AD in the group.
Given the strong boost in accuracy we observe after feature se-
lection at the MCI stage of early incipient AD, wewould expect the
classifier trained on selected features to bemuchmore sensitive to
potential AD also in the ncMCI cohort. Supportive of this reasoning
is our VBM result comparing ncMCI classified as AD with healthy
controls. This reveals a GM atrophy pattern that is very similar to
that observed in correctly classified AD and cMCI. An evaluation of
assignment of ncMCI patients with a short follow-up as controls is
therefore highly problematic in terms of interpretation.

We further detect substantial differences between correctly
and incorrectly classified control subjects andMCI and AD patients
using the VBM approach. Both correctly classified AD and
cMCI show extensive atrophy in a temporoparietal-hippocampal
network, whereas only minor changes restricted to the hippo-
campus are detected in misclassified patients. The finding of a
temporoparietal-hippocampal atrophic network is consistent
with a similar set of regions reported for cMCI and AD in the
literature (Karow et al., 2010; Schroeter et al., 2009). However,
cumulative evidence shows that current diagnostic selection
criteria do not discriminate accurately between AD and other
types of dementia (Dubois et al., 2007; Varma et al., 1999) and that
hippocampal atrophy is also found in other dementia syndromes
such as frontotemporal lobar degeneration (Barnes et al., 2006,
2007; van de Pol et al., 2006). Taking both findings into account
questions the reliability of selection criteria used in the ADNI
cohort and of suggested diagnostic algorithms that use only hip-
pocampal atrophy as a biomarker for AD (Devanand et al., 2007;
Laakso et al., 1995; Morra et al., 2009a, 2009b). Indeed, the diag-
nostic accuracy we achieve for AD of 80.3% is compatible with
results published in pathologic studies of patients dying with a
clinical diagnosis of AD and differ from the SVM-based classifi-
cation accuracy of w95% when scans from pathologically verified
cases of AD were used (Kloppel et al., 2008b). Given very recent
pathologic-clinical diagnostic results, this is clearly an important
area for further research (Beach et al., 2012).

As previously shown, sMRI can be used to predict conversion
from MCI to AD (Devanand et al., 2007; McEvoy et al., 2009; Plant
et al., 2010) and even to distinguish between cMCI and ncMCI
with reasonable accuracy (Ewers et al., 2010; Hinrichs et al., 2011).
However, in these studies, cMCI patients were pooled over all time
points and so obscuring the influence of TTC on diagnostic accuracy.
Additionally, disease-related processes have been shown to influ-
ence the estimation of healthy aging and vice versadhealthy aging
has been shown to interact with disease detection (Dukart et al.,
2011b; Franke et al., 2010). For these reasons, we removed the
voxel-wise variance explained by healthy aging from all imaging
data based on estimates from an independent healthy cohort
(Dukart et al., 2011b). All observed changes in accuracy estimates
over time can therefore be attributed to disease-related pathologic
processes.

The average accuracies obtained in our study for detection of AD
and healthy controls and of conversion from MCI to AD are com-
parable with those reported in the literature. However, most pre-
vious studies applied feature selection algorithms optimizing the
cross-validation performance within their own datasets. These
types of algorithms carry the risk of overestimating the conversion
from MCI to AD detection accuracy because of multiple testing and



Table 5
Voxel-based morphometry results for comparisons between correctly and incorrectly classified subjects

Region Side MNI coordinates Cluster size Peak T value

x y z

Controls correct > controls misclassified
Hippocampus, parahippocampal gyrus, amygdala, fusiform gyrus, superior and middle

temporal poles, inferior temporal gyrus
R 23 8 �47 3409 4.9

Middle occipital gyrus, inferior parietal lobule, supramarginal gyrus, angular gyrus, superior and
middle temporal gyri

L �45 �60 38 1196 4.5

Postcentral gyrus, superior parietal lobule, precuneus, paracentral lobule L �15 �47 66 367 4.3
Precentral gyrus, postcentral gyrus L �63 �11 32 346 3.9
Postcentral gyrus, superior and inferior parietal lobules L �36 �39 45 254 4.2
Fusiform gyrus, inferior temporal gyrus R 60 �27 �30 242 3.8

cMCI correct < cMCI misclassified
Rolandic operculum, olfactory cortex, insula, hippocampus, parahippocampal gyrus, amygdala,

fusiform gyrus, superior, middle, and inferior temporal gyri, superior and middle temporal poles
L �36 �15 �35 10,064 5.4

Insula, parahippocampal gyrus, amygdala, superior, middle, and inferior temporal gyri, superior and
middle temporal poles

R 35 15 �32 2355 4.4

Fusiform gyrus, middle temporal gyrus, middle temporal pole, inferior temporal gyrus R 48 �21 �24 1481 4.6
Inferior parietal lobule, supramarginal gyrus, angular gyrus, middle temporal gyrus L �41 �71 48 1425 4.1

cMCI correct > cMCI misclassified
R crus I of cerebellar hemisphere, L/R crus II of cerebellar hemisphere, R lobule VI of cerebellar hemisphere,

R/L lobule VIIb, VIII, and IX of cerebellar hemisphere
L/R 3 �48 �59 4679 4.6

Lobule VI of cerebellar hemisphere R 23 �65 �29 209 3.8
AD correct < AD misclassified
Middle and inferior temporal gyri, inferior temporal gyrus R 48 �11 �29 448 4.6
Lingual gyrus R 12 �62 �6 334 4.4

AD correct > AD misclassified
Gyrus rectus R 9 42 �19 464 3.68

ncMCI correct < ncMCI misclassified
Calcarine sulcus, lingual gyrus L �22 �74 3 210 3.83

ncMCI correct > ncMCI misclassified
Parahippocampal gyrus, amygdala, fusiform gyrus, superior and middle temporal poles, middle

and inferior temporal gyri
R 54 �12 �42 3278 5.49

Hippocampus, parahippocampal gyrus, amygdala, fusiform gyrus, superior temporal gyrus, superior
middle and inferior temporal poles, middle temporal pole

L �48 �2 �28 7796 5.34

Key: AD, Alzheimer’s disease; cMCI, mild cognitive impairment (converters); L, left; MNI, Montreal Neurological Institute; ncMCI, mild cognitive impairment (nonconverters);
R, right.
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potential overfitting of selected features to a specific dataset. The
main goal of our study was not the further development and
optimization of current classification algorithms but rather to
provide evidence that sMRI-based classification is able to detect AD
substantially before conversion and to characterize the evolution of
detection accuracy. We therefore avoided in our selection and
classification procedures most potential sources of overfitting by
using independent training and test datasets and by avoiding
parameter optimization to improve the classification accuracy of
test data. Similarly, previous studies indicated that training cohort
is an important factor influencing achievable accuracy (Abdulkadir
et al., 2011; Casanova and Hsu, 2012; Chu et al., 2012). We would
therefore expect that the accuracy we obtained for classification of
all clinical groups could be further increased by using larger
training datasets.

Another related issue is the use of only AD patients in the training
dataset. It is likely that higher accuracies could have been achieved for
early AD detection if only cMCI subjects had been used as a training
dataset. However, from our point of view, it is very important for
clinical practice to establish a single classifier that will be capable to
detect AD irrespective of stage. We therefore avoided training a
separate classifier for application only onMCI subjects. Nonetheless, a
classifier built on already manifested AD is also likely not to be the
best for AD detection in all its stages. The issue of establishing an
optimum classifier with maximum accuracy for early AD detection
should be addressed in future research, for example, by integrating
both cMCI and AD patients in the same training dataset to allow SVM
or other techniques to detect a stage-independent AD pattern.

A potential source of limitation in our study that also needs
consideration is that all the data used for training and testing,
although treated independently, were extracted from the same
cohort (ADNI). Any potential selection bias inherent to the ADNI
cohort could therefore limit the generalizability of our results to
other sources of patients.

In summary, our study provides first evidence that sMRI might
contain information that can be used for detection of AD already at
early disease stagesd4 years before conversion from MCI. We
further demonstrate that control subjects and ncMCI that are
classified as AD using automated computer-based diagnostics show
preclinical cognitive deficits align with an atrophy pattern that is
characteristic for AD. Both findings are supportive for the capability
of automated machine learning algorithms based on sMRI data to
detect a possible incipient AD.
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